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Abstract A rapid, simple and highly sensitive first
derivative synchronous spectrofluorimetric method was
developed for the simultaneous analysis of a binary
mixture of labetalol HCl (LBT) and furosemide (FUR)
without prior separation. The method was based upon
measuring the first derivative of synchronous fluores-
cence spectra of the two drugs at Δλ =130 nm in
aqueous ethanol (55% V/V). The different experimental
parameters affecting the synchronous fluorescence of the
studied drugs were carefully studied and optimized. The
first derivative amplitude-concentration plots were recti-
linear over the range of 0.10 to 1.00μg/mL and 0.05–
0.50μg/mL with lower detection limits of 0.0149 and
7×10−3 μg/mL and quantification limits of 0.045 and
0.021μg/mL for LBT and FUR, respectively. The proposed
method was successfully applied for the determination of
the studied drugs in synthetic mixtures. The results
obtained were in good agreement with those obtained by
the reference methods.
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Labetalol HCl: 5-[1-hydroxy-2-(1-methyl-3-henylpropyla-
mino)ethyl] salicylamide hydrochloride. LBT is a non-
cardiovascular β-blocker. It is reported to possess some
intrinsic sympathomimetic and membrane stabilizing activ-
ity. It has-in addition-selective α1-blocking properties
which decrease peripheral vascular resistance. The ratio of
α to β-blocking activity has been estimated to be about 1:3
following oral administration, and 1:7 following intrave-
nous administration. It is used in the management of
hypertension and to induce hypotension during surgery
[1]. LBT is the subject of a monograph in each of the
British Pharmacopoeia, BP [2] and the United States
Pharmacopoeia, USP [3]. The BP recommends non
aqueous titration for the raw material and spectrophotomet-
ric measurement at 302 nm for tablets and injections. The
USP [3], on the other hand, recommends HPLC method for
the raw material and its formulations

The therapeutic importance of LBT initiated several
reports on its determination, both in formulations and in
biological fluids, viz: spectrophotometry [4–7], spectro-
fluorimetry [8–13], HPLC [14–17], HPLC-MS [18–20],
capillary electrophoresis [21, 22], and voltammetry [23].
LBT HCl was also determined in pharmaceuticals using an
ion selective electrode sensitive to LBT with a liquid
membrane [24].
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Furosemide, 4-Chloro-N-furfuryl-5-sulphamoylanthra-
nilic acid, is a potent diuretic with a rapid action. Like the
other loop or high-ceiling diuretics it is used in the
treatment of oedema associated with heart failure, including
pulmonary oedema, and with renal and hepatic disorders
and may be effective in patients unresponsive to thiazide
diuretics. It is also used in high doses in the management of
oliguria due to renal failure or insufficiency. Furosemide is
also used in the treatment of hypertension, either alone or
with other antihypertensives [1]. FUR is the subject of a
monograph in each of the BP [2] and the USP [3]. The BP
and USP recommend non aqueous titration for the raw
material. The BP recommends spectrophotometric mea-
surement at 271 nm for the tablets and injections, while
USP [3] recommends HPLC method for the tablets and
injections. There are several reports on the determination of
furosemide, both in formulations and in biological fluids,
viz: spectrophotometry [25–32], spectrofluorimetry [33–
35], chemiluminescence [36, 37], enzyme immunoassay
[38] gas chromatography [39–41] and HPLC [42–47].

In fluorimetric methods, high sensitivity and selectivity are
generally expected. However, problems of selectivity can
occur in multicomponent analysis because of the overlap of the
broadband spectra observed. Synchronous fluorescence spec-
troscopy (SFS) has been found to have several advantages such
as simple spectra, high selectivity and low interference [48].
Because of its sharp and narrow spectrum; SFS serves as a
very simple, effective method of obtaining data for quantita-
tive determination in a single measurement. SFS techniques
are classified according to the scanning modes of mono-
chromators into constant-wavelength, variety angle and
constant-energy. The combination of synchronous and deriv-
ative fluorimetry enhances minor spectral features and allows
more reliable identification of chemical species [49].

Recently, Derivative synchronous fluorometry (DSF)
technique has been utilized for the determination of
cinnarizine and domperidone in pharmaceutical prepara-
tions [50], diflunisal and salicylic acid in serum [51],
acetylsalicylic acid and caffeine in pharmaceutical formu-
lation [52] and amiloride and triamterene in urine [53]

The aim of the present work was to develop a simple,
sensitive and rapid method for the simultaneous determina-
tion of LBT and FUR through first derivative synchronous
fluorimetry (FDSF) based on their native fluorescence.
Because of the high overlap of the emission spectra of LBT
and FUR, it was difficult to analyze and determine their
contents by conventional fluorimetry. Such problem was
resolved by using FDSF. The synchronous spectrum at
constant Δλ=130 nm between the emission and excitation
wavelengths, has been selected as the optimum one to
perform the determination. This method was applied to the
determination of LBT with FUR in synthetic mixtures and in
their single pharmaceutical preparations.

Experimental

Apparatus

▪The fluorescence spectra and measurements were
recorded using a Perkin-Elmer UK model LS45
luminescence spectrometer, equipped with a 150 W
Xenon arc lamp, gratting excitation and emission
monochromators for all measurements, and a Perkin-
Elmer recorder. Slit widths for both monochromators
were set at 10 nm. A 1 cm quartz cell was used.
Derivative spectra were evaluated using FL WINLAB
version 4.00.02 software
▪A Consort P-901 pH-meter.

Materials and reagents

All reagents and solvents were of Analytical Reagent Grade.

▪LBT and FUR pure samples were purchased from
Sigma-Aldrich Chemie GmbH, Germany and were
used as received.
▪Absolute ethanol (Merck, Darmstadt, Germany)
▪Britton Robinson buffer solution (pH3.0), prepared by
adding 0.5 M sodium hydroxide solution to a 0.02 M
solution of phosphoric acid, boric acid and acetic acid [2]

Standard solutions

Stock solutions of LBT and FUR were prepared by
dissolving 10.0 mg and 2.5 mg of LBT and FUR in
50.0 mL ethanol to give solutions of 200.0μg/mL and
50.0μg/mL, respectively, which were further diluted with
the same solvent as appropriate.

The standard solutions were found to be stable for one
week when kept in the refrigerator.

General procedure

Aliquots of LBT and FUR standard solutions covering the
working concentration range cited in Table 1 were transferred
into a series of 10.0 mL volumetric flasks. 2.0 mL of Britton
Robinson buffer (pH3.0) were added to each flask. The
solutions were diluted to the mark with 55% aqueous ethanol
and mixed well. The synchronous fluorescence spectra of the
solutions were recorded by scanning both monochromators
at a constant wavelength difference Δλ= 130 nm with scan
rate of 600 nm/min using 10 nm excitation and emission
windows. The first derivative fluorescence spectra of LBT
and FUR were derived from the normal synchronous spectra
using FL WINLAB version 4.00.02 software. For best
resolution and smoothing, number of points of 99 was used
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for deriving the first derivative spectra. The amplitude of the
first derivative spectra were estimated at 276.5 nm and
304.5 nm for LBT and FUR, respectively. A blank
experiment was performed simultaneously. The derivative
amplitude of the first derivative technique was plotted vs.
final concentration of the drug (μg/mL) to get the calibration
graph. Alternatively, the corresponding regression equations
were derived.

Applications

Procedure for the synthetic mixture

Aliquots of LBT and FUR standard solutions in different
ratios were transferred into a series of 10 mL volumetric
flasks. 2.0 mLs Britton Robinson buffer (pH3.0) were added
to each flask. The solutions were diluted to the mark with
55% aqueous ethanol and mixed well. The “general
procedure” was then adopted and the nominal contents were
determined either from the previously plotted calibration
graphs or using the corresponding regression equations.

Results and discussion

FDSF spectra of LBT and FUR

Both the studied drugs exhibit native fluorescence at λex 300
and 345 nm λem 425 and 415 nm for LBT and FUR,
respectively, in water and ethanol-water media (Fig. 1). The
fluorescence spectra of these drugs overlap considerably and,
as a result, the conventional spectrofluorimetric method does
not permit the simultaneous determination of both drugs.

Figure 2 shows synchronous spectra of LBT and FUR
and a mixture of both compounds, corrected for the blank
signal, and maintaining a constant interval between the
emission and excitation wavelengths of 130 nm. Because of
the large overlap of the spectra, the determination of LBT
and FUR by synchronous spectrofluorimetry is still not
feasible. This overlap was resolved by taking the first
derivatives of the spectra. The technique used to choose the

Table 1 Performance data for the first derivative synchronous
spectrofluorimetric method for the determination of LBT and FUR
in pure state

Parameters LBT FUR

Concentration range (μg/mL) 0.100–1.000 0.050–0.500

Correlation coefficient 0.9998 0.9998

Slope 96.086 136.864

Intercept 1.397 −1.525
LOD (μg/mL) 14.9 × 10−3 7.0 × 10−3

LOQ (μg/mL) 0.045 0.021

Sy/x 0.634 0.426

Sa 0.433 0.291

Sb 0.698 0.937

%RSD 0.872 1.161

%Er 0.276 0.367

LOD limit of detection, LOQ Limit of quantification; Sy/x = standard
deviation of the residuals; Sa = standard deviation of the intercept;
Sb = standard deviation of the slope, %RSD relative standard deviation
(%RSD= SD x 100/x where SD is the standard deviation and x is the
mean recovery), %Er percent error (%Er=RSD/

ffiffiffi

n
p

where n is the
number of values)

Fig. 1 Normal fluorescence
spectra at pH 3.0 of LBT and
FUR: (A, A') are excitation and
emission spectra of LBT
(0.40°μg /mL),(B, B’) are
excitation and emission spectra
of FUR (0.40°μg/ mL)
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suitable wavelengths that make the measurements propor-
tional to LBT and FUR concentrations was the “zero-
crossing”. Assuming that the derivative of a spectral band is
equivalent to the sum of the derivatives of its individual
bands, when the first-derivative spectrum of one of two
components is zero the total derivative spectrum is a
function only of the concentration of the other component
and vice versa. In fact, the height h1 (λ=276.5 nm, zero-

crossing of FUR) is proportional to the LBT concentration,
whereas h2 (λ=304.5 nm, zero-crossing of LBT) is
proportional to the FUR concentration, Fig. 3.

Optimization of experimental conditions

Different experimental parameters affecting the formation
and stability of the fluorescence of the studied compounds

Fig. 2 Synchronous
fluorescence spectra of FUR
(A; 0.30°μg/mL), LBT
(B; 0.60°μg/mL) & a mixture
of LBT & FUR (C)

Fig. 3 First-derivative
synchronous spectrum of A;
FUR (0.30μg/mL), B; LBT
(0.60μg/mL) & C; mixture
of LBT & FUR
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were carefully studied and optimized. Such factors were
changed individually while others were kept constant.
These factors included Δλ selection, pH, concentration of
ethanol, and stability time .

Selection of optimum Δλ

The synchronous fluorescence spectra of LBT and FUR
were recorded using different Δλ. The optimum Δλ value
is very important for performing synchronous fluorescence

scanning technique concerning resolution, sensitivity and
features. It can directly influence spectral shape, band width
and signal value. For this reason a wide range of Δλ (20 to
160 nm) was examined by obtaining the total synchronous
spectrofluorimetric information available in the matrix as
shown in Fig. 4. In the left side of the figure, the three-
dimensional synchronous spectra of LBT, FUR, and
mixture of both were represented as an isometric projection,
where the synchronous spectra at stepped increments of Δλ
have been recorded and plotted. In right side; the three-

Fig. 4 Three dimensional and
two dimensional (contour plots)
total synchronous fluorescence
spectra of LBT (A, 0.50μg/mL),
FUR (B, 0.50 μg/mL) &
Mixture of LBT & FUR (C)
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dimensional synchronous spectra have been transformed
into contour plots in the excitation-emission plane.

When Δλ is less than 130 nm, the spectra shape is
irregular and the synchronous fluorescence intensity is
very weak. When Δλ is more than 130 nm, poor
separation of the two peaks was obtained. Therefore,
Δλ of 130 nm was chosen as the optimal one for the
separation of mixture of this binary mixture, since it
resulted in two distinct peaks with good shape and a
minimized spectral interference caused by each com-
pound in the mixture.

Effect of pH

The influence of pH on the normal synchronous fluorescence
intensity (Is) of the studied drugs was investigated using
Britton Robinson buffer covering the pH range 1.5–7.0 Fig. 5.
The results showed that the native fluorescence of LBT
increases as the pH of the medium increase, mean while
the native fluorescence of FUR is pH dependant with the
maximum fluorescence observed over a pH range of 2.5–
3.5. At pH greater than 4.0 the fluorescence is negligible
and a hypsochromic shift in the excitation and emission
maxima was observed due to ionization of the carboxylic
group (pKa=3.9).

The volume of the Britton Robinson buffer on the
synchronous fluorescence intensity of FUR and LBT was
also studied using different volumes of buffer, and 2.00 ml
of Britton Robinson buffer pH3.0 was chosen throughout
the study, Fig. 6.

Effect of ethanol concentration

The effect of ethanol concentration was also studied. It was
found that synchronous fluorescence intensity (Is) of LBT
and FUR increase as the ethanol concentration increase till
50% (v/v) ethanol-water, after which the Is remain constant,

Fig. 7. Therefore, 55% (v/v) ethanol-water was selected as
the optimum concentration for determination of LBT with
FUR.

Effect of time

The effect of time on the development and stability of the
fluorescence of the drugs was also studied. It was found
that the fluorescence was developed immediately and
remained stable for more than 1 h.

Effect of ionic strength

The impact of ionic strength on the system was also studied
using different concentrations of NaCl ranging from 5×10−3

M to 0.1 M. NaCl has been used as a counter ions to study
ionic strength since sodium ions have higher adsorption
over the negative charge on the molecule and chloride ions
have the same effect. The results showed that there was no
effect of NaCl concentration on the fluorescence intensity
of the studied drugs.
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Fig. 5 Effect of the pH on the synchronous fluorescence spectra of
FUR (0.25μg/mL) & LBT (0.50μg/mL) in 55% ethanol

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
300

325

350

375

400

425

450

475

500

525

FUR
LAB

Volume of Britton Robinson
 buffer (pH = 3.0)

S
yn

ch
ro

n
o

u
s 

F
lu

o
re

sc
en

ce
In

te
n

si
ty

 (
Is

)

Fig. 6 Effect of volume of Britton Robinson buffer (pH=3.0) on the
synchronous fluorescence spectra of FUR (0.25μg/mL) & LBT
(0.50μg/mL) in 55% ethanol

0 10 20 30 40 50 60 70 80
200

250

300

350

400

450

500

FUR

LAB

Ethanol concentration (%v/v)

S
yn

ch
ro

n
o

u
s 

F
lu

o
re

sc
en

ce
 

In
te

n
si

ty
 (

Is
)

Fig. 7 Effect of ethanol concentration on the synchronous fluores-
cence spectra of FUR (0.25μg/mL) and LBT (0.50μg/mL)
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Analytical performance

The derivative amplitude (DA)-concentration plots for the
studied drugs by FDSF were linear over the concentration
range cited in Table 1. Linear regression analysis of the data
gave the following equations:

DA ¼ 1:397þ 96:086C r ¼ 0:9998ð Þ for LBT at 276:5 nm

DA ¼ �1:525þ 136:864C r ¼ 0:9998ð Þ for FUR at 304:5 nm

where C is the concentration of the drug (μg/mL) and r is
correlation coefficient.

In order to test the mutual independence of the analytical
signals for LBT and FUR, i.e., to show that h1 and h2 are
independent of FUR and LBT concentrations, respectively,
calibration graphs were obtained from height (h) measure-
ments for standards containing between 0.1 and 1.0μg/mL
of LBT, in the presence of different concentrations of FUR
(Fig. 8) and for standards containing between 0.05 and
0.50μg/mL of FUR, in the presence of different concen-
trations of LBT (Fig. 9).

The analytical parameters for all the calibration graphs
were summarized in Table 2, from which it can be deduced

that the amplitude of the derivative signal of the mixture at
the zero crossing point of the derivative spectrum of one of
the two components is a function only of the other
component, in accordance with theoretical predictions.
Moreover, the values of the correlation coefficients and
the low values for the intercepts indicate good linearity for
all the calibration graphs obtained for the first-derivative
measurements.

Statistical analysis [54] of the results obtained by the
proposed and the official method for FUR [2] and a
comparison fluorimetric method [13] for LBT using
Student’s t-test and variance ratio F-test, shows no
significant difference between the performance of the two
methods regarding the accuracy and precision, respectively
(Table 3).

Analysis of synthetic mixture sample

The proposed method was applied to the simultaneous
determination of LBT with FUR in synthetic mixtures
containing different concentrations of both drugs in
different ratios. The relative fluorescence intensities of
first derivative technique were measured for both drugs.

Fig. 8 First derivative synchro-
nous spectra for calibration graph
of LBT in the presence of
0.20μg/mL of FUR. Measure-
ment of the signal made at
λ=276 nm (Zero-crossing point
of FUR). LBT concentration;
a = 0.10; b = 0.20, c = 0.40,
d = 0.60; e = 0.80, f = 1.00μg/mL
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The concentrations of both drugs in the synthetic
mixture were calculated according to the linear regres-
sion equation of the calibration graphs. The results
obtained regarding %RSD and %Er were calculated.
The results indicate high accuracy of the proposed
method as shown in Table 4.

Validation of the method

Linearity

The proposed method was tested for linearity, specificity,
accuracy and precision. Linear regression equations were

Compound determined Conc. of co-existing
compound μg/mL

Intercept Slope Correlation coefficient

FUR LBT 0.100 −1.627 138.790 0.9998

0.200 −1.650 139.115 0.9995

0.400 −1.553 137.670 0.9996

0.600 −1.420 134.101 0.9994

0.800 −1.459 133.813 0.9997

1.000 −1.652 136.711 0.9997

LBT FUR 0.050 1.559 98.193 0.9993

0.100 1.418 98.185 0.9996

0.200 1.499 97.121 0.9998

0.300 1.329 93.921 0.9995

0.400 1.625 98.861 0.9997

0.500 1.479 94.073 0.9994

Table 2 Statistical analysis
of the determination of FUR
(0.05–0.50μg/mL) and LBT
(0.10–1.00μg/mL) in mixtures
by 1st derivatives synchronous
spectrofluorimetry

Fig. 9 First derivative synchro-
nous spectra for calibration
graph of FUR in the presence of
0.40μg/mL of LBT. Measure-
ment of the signal made at λ =
305°nm (Zero-crossing point of
LBT). FUR concentration; a =
0.05; b = 0.10, c = 0.20, d =
0.30; e = 0.40, f = 0.500°μg/mL

824 J Fluoresc (2009) 19:817–828



obtained. The regression plots showed a linear dependence
of derivative amplitude values on drug concentration over
the range cited in Table 1. The small values of the %RSD
and %Er point out to the low scattering of the points around
the calibration curve and high accuracy and precision of the
proposed method.

Limit of quantification (LOQ) and limit of detection (LOD)

The limit of quantification (LOQ) was determined by
establishing the lowest concentration that can be measured
according to ICH Q2(R1) recommendations [55], below
which the calibration graph is non linear (LOQ=10σ/S
where S is the slope and σ is the standard deviation of the
intercept of regression line of the calibration curve). The
limit of detection (LOD) was determined by evaluating

the lowest concentration of the analyte that can be
readily detected (LOD=3.3σ /S). The results of LOD
and LOQ of LBT and FUR by the proposed method are
abridged in Table 1.

Accuracy and precision

The results of the inter-day and intra-day accuracy and
precision of the method have been summarized in Table 5.
The inter-day and intra-day precisions were examined by
analysis of LBT in concentrations 0.20 and 0.60µg/mL and
FUR in concentrations 0.20 and 0.30µg/mL each three times a
day for three consecutive days. The precision of the proposed
method was fairly high, as indicated by the low values of SD
and RSD%, respectively. Also the inter-day and intra-day
accuracy was proved by the low values of Er%.

Table 3 Application of the first derivative synchronous spectrofluorimetric method to the determination of LBT and FUR in pure state
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Robustness of the method

The robustness of the proposed method was demonstrated by
the constancy of the fluorescence intensity with the deliberated
changes in the experimental parameters such as pH, 3.0±0.2,
volume of the buffer 2.0±0.2 mL and the ethanol concentra-
tion, 55%±5%, for the studied drugs with %RSD < 1x10−3 for
all the investigated variables proves that; these minor changes
that may take place during the experimental operation didn’t
greatly affect the fluorescence intensity of the mixture.

Application

Analysis of synthetic mixtures

The proposed method was applied to the simultaneous
determination of LBT with FUR in synthetic mixtures
containing different concentrations of both drugs in
different ratios. The derivative amplitudes of first derivative
technique were measured for both drugs. The concentra-
tions of both drugs in the synthetic mixture were calculated

Ratio FUR/LBT FUR

Taken (μg/mL) Found (μg/mL) % Recovery Error %

1 : 10 0.100 0.102 102.000 + 0.710

4 : 10 0.400 0.388 97.000 −1.630
4 : 10 0.200 0.197 98.500 − 1.620

2 : 10 0.200 0.197 98.500 − 1.620

2 : 10 0.100 0.097 97.042 − 0.870

3 : 10 0.300 0.312 104.000 + 1.020

5 : 10 0.400 0.397 99.250 − 0.850

5 : 10 0.200 0.200 100.000 0.350

LBT

1 : 10 1.000 1.027 102.700 + 0.820

4 : 10 1.000 1.035 103.500 + 1.862

4 : 10 0.500 1.026 102.600 + 1.543

2 : 10 1.000 0.495 98.900 − 0.321

2 : 10 0.500 0504 100.800 + 0.840

3 : 10 1.000 0.992 99.200 − 0.650

5 : 10 0.800 0.80 100.000 1.234

5 : 10 0.400 0.408 102.000 + 0.983

Table 4 Application of first
derivative synchronous spectro-
fluorimetric method to the
determination of FUR and LBT
in synthetic mixtures

Table 5 Evaluation of the accuracy and precision data of the proposed first derivative synchronous spectrofluorimetric method for the
determination of labetalol HCl and furosemide

Drug Amount added (µg/ml) Amount found (µg/ml) (a) X ± SD RSD% Er%

Labetalol Intra-day

0.200 0.198 99.000 ±0.610 0.616 0.356

0.600 0.603 100.500±0.370 0.368 0.212

Inter-day

0.200 0.199 99.50 0±0.827 0.831 0.480

0.600 0.596 99.33 0±0.809 0.814 0.470

Furosemide Intra-day

0.200 0.199 99.500 ±0.840 0.844 0.487

0.300 0.304 101.330±0.920 0.908 0.524

Inter-day

0.200 0.198 99.000±0.669 0.676 0.390

0.300 0.297 99.330±0.707 0.712 0.411

(a) Each result is the average of three separate experiments

x = The mean recovery; SD Standard deviation of results
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according to the linear regression equation of the calibration
graphs. The results obtained regarding %RSD and %Er
were calculated. The results indicate high accuracy of the
proposed method as shown in Table 4.

Conclusion

New simple, sensitive and time saving method was explored
for the simultaneous determination of LBT and FUR in
binary mixture. The first derivative synchronous spectro-
fluorimetric method, by virtue of its high sensitivity, could be
applied to the analysis of both drugs in their synthetic
mixtures. The first derivative spectrofluorimetry technique
enables the determination of either drug in the presence of
the other by applying the zero-crossing technique in the
spectra without prior separation steps.
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